Vibrational dynamics and solvatochromism of the label SCN in various solvents and hemoglobin by time dependent IR and 2D-IR spectroscopy.
نویسندگان
چکیده
We investigated the characteristics of the thiocyanate (SCN) functional group as a probe of local structural dynamics for 2D-IR spectroscopy of proteins, exploiting the dependence of vibrational frequency on the environment of the label. Steady-state and time-resolved infrared spectroscopy are performed on the model compound methylthiocyanate (MeSCN) in solvents of different polarity, and compared to data obtained on SCN as a local probe introduced as cyanylated cysteine in the protein bovine hemoglobin. The vibrational lifetime of the protein label is determined to be 37 ps, and its anharmonicity is observed to be lower than that of the model compound (which itself exhibits solvent-independent anharmonicity). The vibrational lifetime of MeSCN generally correlates with the solvent polarity, i.e. longer lifetimes in less polar solvents, with the longest lifetime being 158 ps. However, the capacity of the solvent to form hydrogen bonds complicates this simplified picture. The long lifetime of the SCN vibration is in contrast to commonly used azide labels or isotopically-labeled amide I and better suited to monitor structural rearrangements by 2D-IR spectroscopy. We present time-dependent 2D-IR data on the labeled protein which reveal an initially inhomogeneous structure around the CN oscillator. The distribution becomes homogeneous after 5 picoseconds so that spectral diffusion has effectively erased the 'memory' of the CN stretching frequency. Therefore, the 2D-IR data of the label incorporated in hemoglobin demonstrate how SCN can be utilized to sense rearrangements in the local structure on a picosecond timescale.
منابع مشابه
Solvent-Independent Anharmonicity for Carbonyl Oscillators.
The physical origins of vibrational frequency shifts have been extensively studied in order to understand noncovalent intermolecular interactions in the condensed phase. In the case of carbonyls, vibrational solvatochromism, MD simulations, and vibrational Stark spectroscopy suggest that the frequency shifts observed in simple solvents arise predominately from the environment's electric field d...
متن کاملEXCESS THERMODYNAMIC PROPERTIES CALCULATIONS FOR ALCOHOLS IN INERT SOLVENTS BASED ON FOURIER TRANSFORM INFRARED SPECTROSCOPY MEASUREMENTS
Self-association of alcohols; including ethanol, methanol, cyclopentanol and octanol in separate mixtures with inert solvents have been studied using FT-IR spectroscopy. Except for the band at 3640 cm–1 in the IR spectrum of the alcohols which is due to the monomer species, the presence of other bands in the region of stretching vibrational frequencies of OH (3100-3700 cm–1) are attributed to t...
متن کاملSolvatochromic Properties of Heteroleptic Copper(II) Complexes Containing N,N,N',N'-Tetramethylethylenediamine and 2-Aacetylcyclopentanone Ligands
Three new heteroleptic copper(II) complexes, [(tmen)Cu(dike)H2O]X where tmen = N,N,N',N'-tetramethylethylenediamine, dike = 2-acetylcyclopentanone anion and X= ClO4- (1), Cl- (2) and Br- (3) are prepared and characterized by elemental analyses, molar conductance measurements and IR and UV-Vis spectroscopy techniques. The complex 1 is fairly soluble in various organic solvents and demonstrates d...
متن کاملVibrational solvatochromism and electrochromism of cyanide, thiocyanate, and azide anions in water.
Small IR probe molecules have been found to be useful to measure local electric fields in condensed phases and proteins and also to study nucleic acid and protein structure and dynamics by monitoring their vibrational couplings and frequency shifts. However, it is still difficult to accurately describe the vibrational solvatochromic frequency shifts of such IR probes, because the local electric...
متن کاملUltrafast 2D IR vibrational echo spectroscopy.
The experimental technique and applications of ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy are presented. Using ultrashort infrared pulses and optical heterodyne detection to provide phase information, unique information can be obtained about the dynamics, interactions, and structures of molecular systems. The form and time evolution of the 2D IR spectrum permits ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 19 14 شماره
صفحات -
تاریخ انتشار 2014